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The vector potentials of the displacements of the general solutions of static Boussinesq and Papkovich problems are presented
in & form which leads to the splitting of the vector equations of the potentials in cylindrical and spherical coordinates into two
scalar potentials. The solutions of the equations of the scalar potentials for finite bodies of canonical form contain orthogonat
systems of functions on the coordinate surfaces in the region occupied by the body considered, including its boundary surfaces.
One thereby creates the prerequisites for converting the boundary conditions into infinite systems of linear algebraic equations
after expanding the stresses or displacements, specified on the boundary surfaces, in orthogonal functions of the equations of
the potentials. © 2001 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

We mean by the general solution of problems of the theory of elasticity in displacements the replacement
of the Lamé equation

2

__“I_—_\r___ rad diva — ‘ rolrom—a u 1.1
T+vyi—2v® 21 +v) Tt (1.1y

(v is Poisson’s ratio, m is the dimensionless displacement vector, ¢ is the dimensionless time, referred
to ljc, l is the characteristic linear dimension and c is the velocity of sound in the elastic medium), by
simpler equations for the vector and scalar potentials of the displacement vector u: by the vector and
scalar wave equations in non-stationary dynamic problems, by the vector and scalar Helmholtz equations
in stationary dynamic problems, and by the vector and scalar Laplace equations and by biharmonic
equations in static problems.

The general Boussinesq solution of static problems of the theory of elasticity can be reduced to the
vector equation [1-3]

ViViG =0 (1.2)
Equation (1.1) (when 2%u/df* = 0) is satisfied if
-2y .
u-mgradde—rot rotG 1.3

The general Papkovich solution of static problems reduces to vector and scalar Laplace equations
[1,2,4]

VIB=0, V=0 (1.4)

while the displacement vector can be written in the form

1
u—B—mgrad(rB+¢) (1.5)

Here r is the radius vector of the point at which the displacement u is defined.
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262 L. 1. Fridman

Solution (1.2), (1.3) was obtained for the first time by Boussinesq [3]. Assuming the rectangular
coordinates x;, Xz, x; to be dimensionless, the equilibrium equations in displacements, corresponding
to vector equation (1.1), when taking volume forces into account, can be written in the form

Y

1
+Vu, FAHVZX, =0 k=123 (1.6)

Here A is the volume deformation, v, and X are the components of the vectors of the dimensionless
displacement and the volume force respectively, and E is the modulus of elasticity.

Boussinesq introduced three functions of the coordinates y,, W, W3 and represented the components
of the displacements in the form

=M vy, k=123 (1.7)

ox,

Substitution of (1.7) into the system of three differential equations (1.6) leads to replacement of it by
the following three equations

Vzvz"’k =—2(1+V)lEX,“ k= |‘2'3 (18)

Here

2(1-v)ViH = 9 Viy, + ——a—Vz\p2 + ——a-quw]
ox, 0%, ox,

whence it follows that

__ 1 {9y, dy, oy,
2(1~v)(ax, e +® (1.9)

Here @ is an arbitrary harmonic function. The advisability of retaining the function & in expression
(1.9) is extremely doubtful, since the overall order of Eqs (1.8) is quite high (see Section 5).

When X, = 0, Eqs (1.8) correspond to vector equation (1.2), while relations (1.7), taking expression
(1.9) into account when ® = Q, correspond to the vector equality (1.3).

A similar solution of the homogeneous problem was published much earlier by Galerkin [5], pointing
out, without proof, the generality of solution (1.2), (1.3).

Solution (1.4), (1.5) was obtained by Papkovich [4]. A paper with a similar solution was later published
by Neuber [6]. As Papkovich wrote [2, 4], solution (1.4), (1.5) was obtained earlier by Grodskii, but was
published later [7].

Introducing the notation VA, = B, (k.= 1, 2, 3) and substituting it into relations (1.7} in the
case of the homogeneous problem, when V?B, = 0 (k = 1, 2, 3), we abtain, by substituting expressions
(1.7) into (1.6)

38, 0B, OB
—VWiIH =y 2 3
H=vVH ox, * dxy " ox;

whence it follows that

=iy B+ nB B+ @) (1.10)

where @ is an arbitrary harmonic function. The vector equation (1.5) corresponds to relations (1.7) if
we take expression (1.10) into account. Hence, the general Papkovich solution reduces to four Laplace
equations instead of three biharmonic equations in the general Boussinesq solution.

Papkovich [2] gave a thorough analysis of the general Boussinesq, general Papkovich and some other
solutions, found a relation between them and proved their redundant generality. In particular, he did
not consider it necessary to retain the harmonic function & in relation (1.5) to keep the solution general,
but he retained it in order to make it easier to satisfy the boundary conditions. Unlike the general
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Boussinesq solution the introduction of the harmonic function @ into the general Papkovich solution,
as can be seen from the following (Sections 2 and 3), is not only useful but also necessary.

Solutions of specific problems of the theory of elasticity for the simplest finite bodies were constructed
[1, 8,9, etc.] using particular solutions of the equations of the displacement potentials. Complete solutions
{a complete se of particular solutions) of the equations of the stationary dynamic prablem of the theory
of elasticity for finite bodies of canonical form in rectangular, cylindrical and spherical coerdinates were
given in [10, 11], which enable problems of the frequencies and forms of natural oscillations to be solved.
The approximation of complex bodies by canonical bodies solves the important technical problem of
calculating the natural frequencies of oscillations of the elements of structures using the equations of
the theory of elasticity [12].

General solutions of static problems of the theory of elasticity by methods emploved previously in
[10, 11], can be reduced to a form which enables boundary-value problems to be solved for finite bodies
of canonical form. A canonical body, as previously [10, 11], is a finite body obtained by the intersection
of no more than three pairs of surfaces, where the surfaces of each pair belong to one of three families
of coordinate surfaces.

2. REPRESENTATION OF THE GENERAL SOLUTIONS IN
CYLINDRICAL COORDINATES

A canonical body with dimensionless cylindrical coordinates p, @, z is a body obtained by the intersection
of cylindrical surfaces p = py and p = p,, the half-planes ¢ = 0 and ¢ = @p and the planes z = 0 and
z=zp{P1<p<p, 0=<Q =00 <z=<z) Acircularcylinder (p; <p <p,, 0 <z=<zj)isalsoa
canonical body.

By analogy with the vector potential of transverse waves in the stationary dynamic problem [13], the
biharmonic vector of the general Boussinesq solution: can be written in the form

G = ye, + rot(y.e,) (2.1)

Here ¢, is the unit vector along the z axis, and y and . are scalar functions of the coordinates. (The
possibility of such an approach to static problems in cylindrical coordinates for the general Boussinesq
solution was indicated previously in [14]).)

Substituting expression (2.1} into (1.2) we obtain

ViVig =0, ViViy, =0 (2.2)
We introduce the notation
1 oy
Vy=y, - —L=F, Vi, =
Y=V 20-v) 3% V.=V, (23)

The displacement vector u, after substituting expression (2.1) into Eq. (1.3) and taking the notation
(2.3) into account, is given by

u = gradF +ye, + rot(y,e,) (24)

Hence, the vector potential G of the displacements is replaced by scalar biharmonic potentials y and
harmonic potentials .

Laplace’s equation, like Helmholtz’ equation in the stationary dynamic problem [10, 11}, can be solved
by the method of separation of variables. The parameters of the separation are chosen so that, of the
three ordinary differential equations, two are the Sturm-Liouville equations and, with the appropriate
boundary conditions, describe the Sturm-Liouville problem in the region occupied by the canonical
body considered. An alternate choice of the separation parameters, giving three possible combinations
of two variables, by means of which the Sturm-Liouville problem is solved, leads to the construction
of solutions of Laplace’s equations and of the biharmonic equation in the form

ZZRS:“"P:: +zz k“ Wim +zz¢§llt)unrfn

(2) ! du l d!} (2) i du
),EZ "W, de v, dz %% n, do ZZ u, dz 0 (25)
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W= ZZ(RHIPI + R::rgl})umun +Zz(zhn +Z.:Sl) )umwkm + zz(q’m + dif,?’)vnr,"
nt o kA m I n

Here 1,,(0), v.(z), win(P), tn(p) are the eigenfunctions of the Sturm-Liouville equations

=(m—l)1t

U, =COs|L, @, N,=——, m=L2,...
Po
vy =cosvyz vy =T Lo (2.6)
%o

ay, daJ
Wim = d_pu(chkm )‘,l»l (Phkm )= “a';‘"(pzhkm)yp Phyn)

hin = Re ]it(pvn )8 L, = Im ]i':(PVn)

dryy, dhyy,
fin = di)! (pZVn)IIIn(an)_JdpL(pZVn)rﬂn(pvn L n>li 27)
Pz (-Dr
=cof TyIn=| 1,=——— I=112,...
f [ . P] " Intp, /py)

Y, andJ, are Bessel functions of the first and second kind respectively of order ., (the subscript m is
omitted for brevity), I;. is the modified Bessel function of imaginary order i<, i is the square root of
-1, and 7, is the order modulus (the subscripts / and n are omitted for brevity).
The eigenvalues of the Sturm-Liouville problem #,,,, and 7, (n > 1) are found respectively from the
equations
dw

d;m(pl)=0, k=1L2,... (=0, wy=1)

drln -
2 = 0, n>1 (2.8)

The functions u,, and v, form an orthogonal system of functions on the cylindrical surfaces p = const,
including the cylindrical boundaries p = pyand p = p, (0 <z <25, 0 < ¢ < @p).
The functions wy,,, satisfy the orthogonality condition

P;
[ WimWimpdp=0, k2l
]

and, together with the function u,,, form an orthogonal system of functions in the z = const planes,
including the plane boundariesz = 0andz = z5(p; < p < po, 0 < @ < ).
The functions #, satisfy the orthogonality condition

P2 1
[ thtia=dp=0, 1%k
pI P

and together with the functions v, form an orthogonal system of functions in the half-planes @ = const,
including the boundaries e = Jand @ = @y (p; S p =Py, 0 =Sz = z7p).

The procedure for separating the variables in Laplace’s equation also gives a third function,
corresponding to each of the three combinations of two orthogonal functions

Lapva) | oy KulPVa)

) , >1
Ku(plvn)

RU;.,) = A(j’
” ™ Iu (pzvn )

R = AQpP + Bp ™=, m>1 R =A{Inp+ B
2 = i) expl—hyn(zo — D)1+ D) exp(-hymt),  Z{ = Cl{’2+ DY

© = i expl~1,,(9g — )]+ G exp(-7,,0). O =E{{'¢+ G}’
Jj=0,1,2
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where {, and K, are modified Bessel functions of the first and second kind of order p,, (the subscript
m is omitted).
In the solution of the biharmonic equation, the third function

__ 1 _dR,) R o R 4 p3 PR dr')
T dp T 4(1—u?,,) dp
7434 w1 ]dz,

Z, =——z— 2, =——7'Zf}
T = L 2 T3 g
1 4l 1 g, 1 3d®)y
=— , O ===0"D|/+=
Py, ZT,Z,,‘p o ] 2‘P 1 B‘P 0

corresponds to these combinations of orthogonal functions, where Afrﬂ, Bg,)z, C(D D(’) E(’)
GE =%, 2) ure seyuentes vt ulviruTry Tomss.

Introducing into (2.5) the conditions for the displacement potentials to be periodic with respect to
the coordinate @, we obtain the displacement potentials for a circular cylinder

¥, = ‘Z(Z Ry + EZ"’w,m)cos(m -y

n n

w2=-z[>: R L +zz£',1w,,.,.)sin<m—ncp 29)

y= E[Z(R,,,,. +ROw, +Z(ka +Z{0 )wk,,,]cos(m -y

In the case of the axisymmetric problem (i = 1), solution (2.9) is identical with Abramyan’s solution
[L3.

The representation of the displacement potentials in the form (2.5) and (2.9) predetermines the change
of the boundary conditions into infinite systems of linear algebraic equations in the sequence of arbitrary
constants. The free terms of the equations are the coefficients of the expansion of the stresses or
displacements, specified on the boundary surfaces, in corresponding orthogonal systems of functions.
The number of boundary conditions is equal to the number of sequences of arbitrary constants. When
the system is truncated, i.e. on retaining the same number of terms with respect to each summation
index, the number of unknowns corresponds to the number of equations.

The regularity of the infinite systems obtained is proved for the special case of axisymmetric
deformation of a circular cylinder in [15].

The general Papkovich solution can be represented in a similar way. To do this the harmonic vector
B is written in the same way as the biharmonic vector G {2.1)

B =y, e, + rot(y;e,) (2.10)
after which the first vector equation of (1.4) changes into two scalar Laplace equations
Viy, =0, Viy, =0 (2.11)

Substituting expression (2.10) into (1.5) we obtain the displacement vector in the form (2.4) if we
introduce the notation

_ atyz
F= ——4(1_v)( 5 z\u,+¢) (2.12)

Although the functions F have a different form in the general Boussinesq and Papkovich solutions,
the Laplacian of these functions is the same in both general salutions, due to the fact that she volume
deformation

J=2v dy,

dy, 2
di ViF =—(1-2V)V2F
A=diva = ¥ = A = v a2
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is identical. The elementary rotation vectors
w =rotu =rot{y,e; )+ grad-ia;”—2
z
are also identical in both general soiutions.

The function v, in relations (2.10) and {2.12) is given by the first relation of (2.5), while the function
> is best written in the form

1 duty
v:=3 3 AT e 33 20 S, 13T o,

The function & can be obtained from ¢, by replacing R}, Zgn)i, CDE,I,) by R, 2533,, CD},?) respectively,

3. REPRESENTATION OF THE GENERAL SOLUTIONS
IN SPHERICAL COORDINATES

In dimensionless spherical coordinates p, 8, ¢ (p, x, ¢, x = cos 8) the canonical body occupies a region
formed by the intersection of the spherical surfaces p = p; and p = p, with the canonical surfaces
B =0,and B = 8; (x =x, andx = x;) and the half-plane ¢ =0 and @ = @y (P, S p < pz, 8, <O =<8,
0 =<0 =<qp).

The solid of revolution obtained by the intersection of the cancnical and spherical surfaces
(p; = p = p3, 8; =< 0 =< 6,), and a hollow or solid sphere is also a canonical body.

The splitting of the vector equation (1.2) into two scalar equations is due to the representation of
the biharmonic vector G in the form

G = pye, + rot(py.ey) + grad yp 3.1)

Here e, is the unit vector coinciding with the direction of variation of the coordinate p, and v, y» and
yrg are scalar functions of the coordinates.

Unlike cylindrical coordinates, in spherical coordinates the analogy between (3.1) and the potential
of the transverse waves in the stationary dynamic problem [13] is incomplete: in (3.1) an additional
function y, has been introduced, which is a particular solution of the equation

Viyg =4y (3.2)
Substituting (3.1) into (1.2) we obtain
ViViy =0, ViVy. =0 (3.3)
By introducing the notation

1-2v |

- =F, Vi, :
pv Ao )ap(pw) V. =Y, (3.4)

Viy=y,.

and substituting (3.1) into (1.3), we can write the displacement vector in the form
u = grad F + py, ¢, + rot(py.e,) (3.5)

Hence, the general Boussinesq solution in spherical coordinates, as also in cylindrical coordinates,
reduces to a biharmonic equation (the first equation of (3.3)) and the Laplace equation

V2W2 = 0 (3'6)

The solution of these equations in spherical coordinates is constructed using the same scheme as in
cylindrical coordinates, and is written in the form

v, =ZZ R‘”umu,,,,,+zz X w,‘+%z!, &P w, 1,
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| du, 1 du, 7
EZ RZ — - d(p +EZ mﬁ'&;"’n +§§ DY Wity
W=T3 (R, + RO +IT K+ X Xio +zz (D) + DL Wty (3.7
mn

Here 1,,(0), vunx), wi{p) and #;(x) are orthogonal system of functions in the region occupied by the
canonical body

u, =COSi, 9, K, =M, m=12,...
Po

Qv

UV pn = (xp)P}

H(x) (3.8)

and PY(x) and Q%(x) are the associated Legendre functions of the first and second kind of order p,,
and degree v,,,,, respectively (the subscripts /n and n are omitted for brevity). The degree v,,,, is the
nth eigenvalue of the Sturm-Liouville problem and is given by the equation

dv,,
d;. (x|)=0, V“=0, U“=|

The functions v,,,(x) satisfy the orthogonality condition

x
J Ut mdx=0, n=l

)

and, together with the functions u,,, form an orthogonal system of functions on the spherical surfaces
p = const (x; <x < x3, 0 < ¢ < ¢), including the spherical boundaries p = p; and p = p,.
The function w;(p) is given by the relation

W, =p37ip A[—Esm(t,‘ In ‘:’2]+ T cos(t In*% sz J] (3.9

The eigenvalues T, are given by

_ {k-Dm

tk = N k=l,2,...
In(p, /py)

The function w; satisfies the orthogonality condition

P2
| wowdp=0, k=l
P

and, together with the functions u,,, form an orthogonal system on the canonical surfaces x = const
(p; = p = py, 0 = @ =< ), including the conical boundarics x = x; and x = x,.
The function t;(x) can be written in the form

dt dr,
[kf =—Zi—u—(.:\'z)tlﬂ(x)_I(xz)rzﬂ(x) (3'10)
Here
[u’ =Re P|i§+’.t(x), Izﬂ =Im P_ic}s+i,[(x)

where Pi%,rm, is the assaciated Legendre function of the first kind of imaginary order i{,; and complex
degree -2 + it (i is the square root of -1, and the subscripts / and k are omitted for brevity).
The modulus of order { is the Sturm-Liouville eigenvalue and is given by the equation
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dty
—aL =0, [=12,...
dx ()

The functions 7, satisfy the orthogonality condition

LY ] I
J‘ I“l'k,,--——-?dx=0, l#n
I-x

Ty

and together with the functions w, form an orthogonal system on the half-planes ¢ = const
PL=p=E=pry=<x<x) 1nc1udmg on the plane boundaries ¢ = 0 and ¢ = @;.
When separating the variables in Laplace’s equation, the third function

R(jl =A(j)pvmn +B(j)p‘“(\fmn +1)
XU) C(I)X Irm D sz
‘1’“ )= “)exp[-—g,,,(tpg ‘P)]"'GH ) exp{~G,®)

corresponds to each pair of orthogonal functions. Here Xy, and Xy, are the particular solutions of
the differential equation of the cone function [16]. The relation between the functions X, and X,
and the associated Legendre functions is given by the expressions

le%ﬂ" = Xlkm - Xka

I {1 l
- X2km +a_,X””']+IE(I Xaim _qum]

nt n(1 nt .ol
a. =chzT‘—cosz[E(5—pm)], a, =ch? Tk-sm2[—i—(§—um)]

obtained from the values of the associated Legendre functions on the “branch cut”, i.e. for the real
argument -1 < x < 1[16].
The functions X, and X, have the form

T ]
o Vit = cosnum(a

2" n & ¥ i {P) 2p+r=1
Xr " = rim X prr , = ]- 2 3.11
o Y im0 24 (0X(1 = x2 ) 72 220 F(r = Y5+ pipt (311)

2 2
2r—-1 p, 1, 2r—t p I,
')’rkm(p)=|:RBr(T——2—+p+E£Tk]] +[lmr(-4———zi+p+5£1k):|

where I is the gamma function.
In the solution of the biharmonic equation the following third function corresponds to each pair of

the same orthogonal functions

(l)
Ron =~ : p? Rl ~ 207 Lmn
2(2v,, +3)(=2v,, +1) dp

7 $0)Y 24, (0)
Xim = -p* w[df}(ﬁ’xm +J\ Xgpm )+ Did (=T 3 Xy + IXpim )

2“»:'”
( Loy (pdd)mJ

2Cu do

I = Xiim Xopmdx, S, =jxrkmdxv r=1,2

. = 1-x )=

where 4, BY) D D EW, GP(j = 0,1,2) are sequences of arbitrary constants.

For a solxd of revolutlon bounded by spherical and conical surfaces (p; < p < pz, 41 <x < x3),
the conditions of periodicity with respect to the coordinate ¢ are satisfied if p, is replaced by
m-1
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V= E(Z R on +Zzwwam)005(m-l)¢
m\n k

vy = z(z R, + zzii’wk,,}swm— e (3.12)
k

m n

v=2 [Z (Ropn + RN e + 3 (X + X,(‘g’)wk,,,]cos(m— e
n k

m

In the general Papkovich solution the harmonic vector B is written by analogy with the biharmonic vector
G (3.1) in the form

B = py, e, + rot(py.e,) + grad yy, (3.13)
where g is the particular solution of the equation
Viyg =2y,

When expression (2.13) is substituted into the first equation of (1.4), the vector Laplace equation
splits into two scalar equations

V2y, =0, Viy,=0 (3.14)

and the displacement vector u (1.5) takes the form (3.5) if we introduce the notation

(pzw.+pa7w2+¢]
p

F:w°_4(|-v)

Just as in cylindrical coordinates, the Laplacian of the functions F
d

I
ViF =2y, -
Y20y dp

(pPwy)

is common in the general Boussinesq and Papkovich solutions, as a result of which the volume
deformation A is identical in both general solutions

1-2v 0

20 _V)SE(P‘W)

A=diva=

The vector w of elementary rotation is also expressed by the same relation in the general Boussinesq
and Papkovich solutions

w = rolu = rol(py,e, ) + gradaa—p(P‘Pz)

4. THE BOUNDARY CONDITIONS OF THE
STURM-LIOUVILLE PROBLEM

The eigenfunctions y,,(x) (m =1, 2,...) of the Sturm-Liouville problem in the section a < x =< b satisfy
the boundary conditions [17]

oy (@) +ayy,(a)=0, By, (B)+B,y,(b)=0 (4.1)
where o, 04, By, B are constants, subject to the conditions
logl +loal > 0, Byl + Bl >0 (4.2)

Solutions (2.6), (2.7) and (3.8)—(3.10) of the Sturm—Liouville problems satisfy boundary conditions (4.1)
when o, = B; = 0, o = B, = 1. However, other combinations of the constants o, B, o, f§; are possible.
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It is appropriate to make the eigenfunctions of the Sturm—Liouville equation and the equation for
the eigenvalues for arbitrary o, B;, o, B, subject to conditions (4.2).

I ¥,,,(x) and y,,,,(x) are two particular solutions of the Sturm-Liouville equation, corresponding to
the eigenvalue Am, the eigenfunction y,,(x) can be written in the form

Y (XY= [B1 Y2 (B) + B2y2,n (D)]31,m () = By 3)m (B) + B ¥ (B)]¥, ()
or
Ym (X} = (0772, (@) + 032, (@]F1y (X) = [0 31 (@) + O3 Y], (@] (%)
The equation of the eigenvalues takes the form

B Y1 (@)Y 200 (8) = Y2, (@)Y, (0)] + OB 3171 (@)Y, (D) — Yo (@) ¥ (BT +
0B [V (@)Y 20 (B) = Y3, (@}¥1 (B)]+ B3 [y}, (@)Y5,, (8) = Y5, (@¥] (D)) = O

The choice of the combinations of constants o, B;, o, B, affects not only the eigenvalue spectrum
and, consequently, the convergence of the expansions in eigenfunctions y,,(x), but also the order of the
truncated system of linear algebraic equations for a constant number of retained terms. More frequently
the combinations ¢i; = B; = 0,0, = fy = L and o) = By = 1, &3 = f; = 0 are used. The latter combination
is a necessary condition for changing to a rational form of boundary conditions in the z = 0 and
z = zg planes in cylindrical coordinates and on the spherical boundaries p = p; and p = p; in spherical
coordinates [18].

5. CONCLUDING REMARKS

The representation of the vector biharmonic potential of the displacements in cylindrical and spherical
coordinates by relations (2.1} and (3.1) and the vector harmonic potential by relations (2.10) and (3.13)
reduces the general Boussinesq solution to two scalar biharmonic equations (2.2) and (3.3), and reduces
the general Papkovich solution to scalar Laplace equations (1.5), (2.11) and (3.14). Here the redundant
generality of the general Boussinesq solution is partially eliminated, while that to the generai Papkovich
solution is completely eliminated. The complete elimination of the redundant generality of the general
Boussinesq solution is due to the dependences (2.4) and (3.5) of the displacement vectors on the first
biharmonic function (2.2) and (3.3) and on the Laplacian of the second biharmonic function. Hence,
the general Boussinesq solution is reduced to a scalar biharmonic equation and the Laplace equation.

The criterion of sufficient generality can be assumed to be the overall order of the differential
equations of the scalar displacement potentials. If it is equal to 6, the number of sequences of arbitrary
constants in (2.5) and in (3.7) is identical with the number of boundary conditions, namely, 18. In this
case, when the infinite system is truncated, the number of unknowns is equal to the number of equations..

It should be noted that similar conversions of the general Boussinesq and Papkovich solutions can
be carried out not only in a rectangular system of coordinates but also in elliptical cylindrical, parabolic
cylindrical and conical coordinates [13].
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